人类如何看到色彩—对色彩的感知又为何造成如此多的分歧

您可能听说过,色彩是非常主观的东西。 我们的团队在色彩管理行业工作,对这一事实了如指掌。 但是也别太把这句话当一回事。 如今我们正在推出一个新的产品系列,在其中,我们深入研究了色彩感知背后的科学,以及影响我们眼中的色彩(顺便说一下,这和我们的朋友、邻居或同事眼中的色彩不完全一样)的许多因素。

 

今天的这篇文章就要探讨一些关于色彩视觉和感知的基础知识。 稍后,我们还会探讨影响色彩感知的物理因素。 最后我们将讨论环境因素。

我们希望您看完本文后,能更好地理解我们为什么经常在颜色问题上产生分歧。

 

我们如何看见

我们拥有视觉是因为我们的视网膜上有感光细胞将信号传输到我们的大脑。 高度敏感的视杆细胞使我们在亮度非常低的情况下也能看见 – 不过看到的是不同色调的灰色。 要看到各种色彩,我们需要较亮的光线以及会大致对三种不同波长作出反应的视锥细胞:

 

  • 短波 (S) – 蓝色光谱(吸收峰 ≈ 445 nm)
  • 中波 (M) – 绿色光谱(吸收峰 ≈ 535 nm)
  • 长波 (M) – 红色光谱(吸收峰 ≈ 565 nm)

 

这就是三原色论的基础,它也叫扬-亥姆霍兹论,是以研究者的姓氏命名的。 它直到 1960 年代才得到验证。

 

对立过程论主张色彩视觉取决于三种作用相反的受体复合体: 光/暗(白/黑)、红/绿和蓝/黄。 将这两种理论结合起来,可以帮助描述我们对色彩的复杂感知。

 

我们感知的色彩取决于物体如何吸收和反射不同波长。 人类只能看到电磁波谱中的一小部分,大致是 400 nm 到 700 nm 的范围,但这已足以让我们看到数以百万计的色彩。

 

色彩感知中的主观性

我们相当擅长识别熟悉的物体的颜色,即使在光照条件变化后也不例外。 眼睛和大脑的这种适应能力被称为色感一致性。 但它对于微妙的色调变化并不起作用,也不能抵消因为光线强度或和质量的变化而造成的色彩变化。

 

对于定义基本色彩的波长,我们相互之间也可能达成一致。 在这方面,我们的大脑所起的作用可能要比眼睛更大。 例如,在罗彻斯特大学 2005 年的研究中,不同的个体倾向于对色彩产生相同的感知,尽管他们视网膜中的视锥细胞数量差异很大。 当志愿者被要求将一个圆盘调整为他们所认为的“纯黄色”光泽时,大家选择的波长几乎都是一致的。

 

但是当一个或多个人员尝试使颜色与样本匹配时,情况就复杂得多。 物理/环境因素和观察者之间的个人差异可能使感知发生改变。 这些因素包括:

 

物理 个人
·      光源

·      背景

·      海拔高度

·      噪声

·      年龄

·      曾用药物

·      记忆

·      情绪

 

我们在今后的文章中将讨论其中一些因素。

 

色彩的数学

既然环境和个人因素会影响色彩感知,如果我们靠肉眼将颜色与色谱样本比较,就不能保证得到准确的匹配。 这可能导致生产延期、材料浪费和质量控制失败等严重的业务问题。

 

因此各家企业现在都依靠数学公式来指定颜色,用不带主观性的测量设备来确保匹配。

 

CIE 色彩模型(也叫 CIE XYZ 空间)是 1931 年创立的。 它本质上是一个映射系统,在 3D 空间中使用红、绿、蓝色值作为轴来标定色彩。

 

如今人们还定义了许多其他的色彩空间。 CIE 的变体包括 1976 年定义的 CIELAB,其中 L 指照度,A 是红/绿轴,B 是黄/蓝轴。 还有另一种模型 CIE L*C*h,它考虑了亮度、彩度和色调。

 

测量工作依托色度计或分光光度仪,它们可提供对色彩的数字化描述。 例如,为了与色谱样本匹配而需要的三原色的各自比例以三色刺激值来表示。 三色刺激值色度计被用于质量控制应用。 Datacolor 提供种类齐全的分光光度仪,适用于各种行业和更复杂的应用。